Imputed Gene Expression versus Single Nucleotide Polymorphism in Predicting Gray Matter Phenotypes

Author:

Chen Jiayu,Fu Zening,Iraji Armin,Calhoun Vince D.ORCID,Liu Jingyu

Abstract

ABSTRACTGenetics plays an important role in psychiatric disorders. A clinically relevant question is whether we can predict psychiatric traits from genetics, which holds promise for early detection and tailored intervention. Imputed gene expression, also known as genetically-regulated expression (GRE), reflects the tissue-specific regulatory effects of multiple single nucleotide polymorphisms (SNPs) on genes. In this work, we explored the utility of GRE for trait association studies and how the GRE-based polygenic risk score (gPRS) compared with SNP-based PRS (sPRS) in predicting psychiatric traits. A total of 13 schizophrenia-related gray matter networks identified in another study served as the target brain phenotypes for assessing genetic associations and prediction accuracies in 34,149 individuals from the UK Biobank cohort. GRE was computed leveraging MetaXcan and GTEx tools for 56,348 genes across 13 available brain tissues. We then estimated the effects of individual SNPs and genes separately on each tested brain phenotype in the training set. The effect sizes were then used to compute gPRS and sPRS in the testing set, whose correlations with the brain phenotypes were used to assess the prediction accuracy. The results showed that, with the testing sample size set to 1,138, for training sample sizes from 1,138 up to 33,011, overall both gPRS and sPRS successfully predicted the brain phenotypes with significant correlations observed in the testing set, and higher accuracies noted for larger training sets. In addition, gPRS outperformed sPRS by showing significantly higher prediction accuracies across 13 brain phenotypes, with greater improvement noted for training sample sizes below ∼15,000. These findings support that GRE may serve as the primary genetic variable in brain phenotype association and prediction studies. Future imaging genetic studies may consider GRE as an option depending on the available sample size.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3