A Method for Monitoring the Effective Air Change Rate for Respiratory Aerosols Using Real-Time Tracers

Author:

Pathak Saurabh,Kottapalli Kalyan,Santarpia Joshua L.ORCID,Botham Aaron D.,Molyneux Sam D.,Balarashti Jamie

Abstract

AbstractVentilation is one of the most critical components in a layered approach toward reducing the spread of airborne infectious diseases in indoor spaces. However, building ventilation systems act together with natural ventilation, local filtration systems and other aerosol removal processes to remove infectious aerosols from an occupied space. Airflow-based determinations of ACH do not account for the full range of aerosol removal processes; however understanding the effective aerosol removal rate is critical to providing airborne infection control.In this study, we investigated the relationship between the calculated air change rate of a space (i.e. volumetric airflow based) and the effective air change rate for aerosol particle removal within the breathing zone based on direct measurements of the rate of change in tracer particle concentrations at representative occupant locations in a room. Further, we examined positional effects under well mixed and non-well mixed conditions.Our results demonstrate that tracer particles combined with real-time sensors can be used to make rapid, accurate measurements of the effective air change rate (eACH) for respiratory aerosols within the breathing zone of non-well mixed rooms. We used two experimental test beds for these analyses. First, numerical simulation (computational fluid dynamic simulation, CFD) was conducted to visualize airflow and particle removal paths within a realistic large room. Here, simulated sensors were placed in concentric zones around a nebulizer providing test-particle releases. This CFD model allowed a direct comparison of the differences between eACH and airflow ACH values under varying levels of mixing and airflow, in a fully controlled system.We then recapitulated this system in physical space to validate the CFD results under real-world conditions that include all mechanisms of particle removal that contribute to true aerosol clearance rates, including deposition and leakage. Here, we measured eACH using the decay of DNA tracer aerosols nebulized and monitored in real-time. We find that a standard sampling time of 15 minutes from the end of nebulization is sufficient to produce an accurate eACH value under non-well mixed conditions. The availability of a rapid direct test for eACH will enable empirical optimization of a wide range of ventilation and filtration mechanisms to reach and maintain target aerosol clearance rates that deliver reliable airborne infection control in typical indoor environments.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3