Inference of annealed protein fitness landscapes with AnnealDCA

Author:

Sesta LucaORCID,Pagnani AndreaORCID,Fernandez-de-Cossio-Diaz JorgeORCID,Uguzzoni GuidoORCID

Abstract

AbstractThe design of proteins with specific tasks is a major challenge in molecular biology with important diagnostic and therapeutic applications. High-throughput screening methods have been developed to systematically evaluate protein activity, but only a small fraction of possible protein variants can be tested using these techniques. Computational models that explore the sequence spacein-silicoto identify the fittest molecules for a given function are needed to overcome this limitation. In this article, we propose AnnealDCA, a machine-learning framework to learn the protein fitness landscape from sequencing data derived from a broad range of experiments that use selection and sequencing to quantify protein activity. We demonstrate the effectiveness of our method by applying it to antibody Rep-Seq data of immunized mice and screening experiments, assessing the quality of the fitness landscape reconstructions. Our method can be applied to most experimental cases where a population of protein variants undergoes various rounds of selection and sequencing, without relying on the computation of variant enrichment ratios, and thus can be used even in cases of disjoint sequence samples.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3