Author:
Sun Zitong,Di Zhengao,Zhang Yang,Wen Huilin,Zhang Shaobin,Zhang Zhiqian,Zhang Jing,Yu Ziyi
Abstract
ABSTRACTLiving materials that combine active cells and synthetic matrix materials have become a promising research field in recent years. While multicellular systems present exclusive benefits in developing living materials over single-cell systems, creating artificial multicellular systems can be challenging due to the difficulty in controlling the multicellular assemblies and the complexity of cell-to-cell interactions. Here, we propose a co-culture platform capable of isolating and controlling the spatial distribution of algal-bacterial consortia, which can be used to construct photosynthetic living fibers. Through coaxial extrusion-based 3D printing, hydrogel fibers containing bacteria or algae can be deposited into designated structures and further processed into materials with precise geometries. In addition, the photosynthetic living fibers demonstrate a significant synergistic catalytic effect resulting from the immobilization of both bacteria and algae, which effectively optimize sewage treatment for bioremediation purposes. The integration of microbial consortia and 3D printing gives functional living materials that have promising applications in biocatalysis, biosensing, and biomedicine. Our approach provides an optimized solution for constructing efficient multicellular systems and opens a new avenue for the development of advanced materials.
Publisher
Cold Spring Harbor Laboratory