Classification of colon cancer patients into Consensus Molecular Subtypes using Support Vector Machines

Author:

Kochan NeclaORCID,Dayanc Barıs EmreORCID

Abstract

AbstractObjectiveThe molecular heterogeneity of colon cancer has made classification of tumors a requirement for effective treatment. One of the approaches for molecular subtyping of colon cancer patients is the Consensus Molecular Subtypes (CMS) developed by the Colorectal Cancer Subtyping Consortium (CRCSC). CMS-specific RNA-Seq dependent classification approaches are recent with relatively low sensitivity and specificity. In this study, we aimed to classify patients into CMS groups using RNA-seq profiles.MethodsWe first identified subtype specific and survival associated genes using Fuzzy C-Means (FCM) algorithm and log-rank test. Then we classified patients using Support Vector Machines with Backward Elimination methodology.ResultsWe optimized RNA-seq based classification using 25 genes with minimum classification error rate. Here we report the classification performance using precision, sensitivity, specificity, false discovery rate and balanced accuracy metrics.ConclusionWe present the gene list for colon cancer classification with minimum classification error rates. We observed the lowest sensitivity but highest specificity with CMS3-associated genes, which is significant due to low number of patients in the clinic for this group.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3