Development of a non-infectious control for viral hemorrhagic fever PCR assays

Author:

Knox Matthew AORCID,Bromhead Collette,Hayman David TS

Abstract

AbstractAssay validation is an essential component of disease surveillance but can be problematic in low resource settings where access to positive control material is limited and a safety risk for handlers. Here we describe techniques for validating the PCR based detection ofCrimean-Congo hemorrhagic fever orthonairovirus, Ebola virus, Lassa virus, Marburg virus andRift Valley Fever phlebovirus. We designed non-infectious synthetic DNA oligonucleotide sequences incorporating primer binding sites suitable for multiple assays, and a T7 promotor site which was used to transcribe the sequence. Transcribed RNA was used as template in a dilution series, extracted and amplified with RT-PCR and RT-qPCR to demonstrate successful recovery and determine limits of detection in a range of laboratory settings. Our results are adaptable to any assay requiring validation of nucleic acid extraction and/or amplification, particularly where sourcing reliable, safe material for positive controls is infeasible.Author SummaryThe majority of zoonoses originate in wildlife and tend to emerge from biodiverse regions in low to middle income countries, frequently among deprived populations of at-risk people with a lack of access to diagnostic capacity or surveillance. Diseases such as Crimean-Congo Hemorrhagic Fever, Rift Valley Fever, Ebola Virus Disease, Marburg Virus Disease and Lassa Fever are viral hemorrhagic fevers (VHFs) and among the most neglected and serious threats to global public health. This threat is partly due to the severity of disease caused by these pathogens, but also because their geographical distribution is close to human populations with often limited access to medical or diagnostic laboratory services. In our study we describe and validate techniques for PCR based detection of five VHF viruses using a synthetic, multi-target non-infectious positive control. Our work has applications in assay design and optimization, particularly where access to source material is problematic or requires high level biosafety containment, as is the case with VHF viruses. This approach can help learners train in techniques used in nucleic acid extraction, amplification, and sequencing of VHF viruses, but can be used for any targets, with potential for multiplexing from a single positive control.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3