Altered grid-like coding in early blind people

Author:

Sigismondi FedericaORCID,Xu YangwenORCID,Silvestri Mattia,Bottini RobertoORCID

Abstract

AbstractSpatial navigation in humans relies heavily on vision. However, the impact of early blindness on the brain navigation network and on the hippocampal-entorhinal system supporting cognitive maps, in particular, remains elusive. Here, we tested sighted and early blind individuals in both imagined navigation in fMRI and real-world navigation. During imagined navigation, the Human Navigation Network was reliably activated in both groups, showing resilience to visual deprivation. However, neural geometry analyses highlighted crucial differences between groups. A 60° rotational symmetry, characteristic of grid-like coding, emerged in the entorhinal cortex of sighted but not blind people, who instead showed a 4-fold (90°) symmetry. Moreover, higher parietal cortex activity during navigation in the blind was correlated with the magnitude of 4-fold symmetry and real-word navigation abilities. In sum, early blindness can alter the geometry of entorhinal cognitive maps, possibly as a consequence of higher reliance on parietal egocentric coding during navigation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3