Abstract
ABSTRACTDecreasing the expression of very long-chain acyl-CoA synthetase 3 (ACSVL3) in U87MG glioblastoma cells by either RNA interference or genomic knockout (KO) significantly decreased their growth rate in culture, as well as their ability to form rapidly growing tumors in mice. U87-KO cells grew at a 9-fold slower rate than U87MG cells. When injected subcutaneously in nude mice, the tumor initiation frequency of U87-KO cells was 70% of that of U87MG cells, and the average growth rate of tumors that did form was decreased by 9-fold. Two hypotheses to explain the decreased growth rate of KO cells were investigated. Lack of ACSVL3 could reduce cell growth either by increasing apoptosis, or via effects on the cell cycle. We examined intrinsic, extrinsic, and caspase-independent apoptosis pathways; none were affected by lack of ACSVL3. However, significant differences in the cell cycle were seen in KO cells, suggesting arrest in S-phase. Levels of cyclin-dependent kinases 1, 2, and 4 were elevated in U87-KO cells, as were regulatory proteins p21 and p53 that promote cell cycle arrest. In contrast, lack of ACSVL3 reduced the level of the inhibitory regulatory protein p27. γ-H2AX, a marker of DNA double strand breaks, was elevated in U87-KO cells, while pH3, a mitotic index marker, was reduced. Previously reported alterations in sphingolipid metabolism in ACSVL3-depleted U87 cells may explain the effect of KO on cell cycle. These studies reinforce the notion that ACSVL3 is a promising therapeutic target in glioblastoma.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献