Abstract
ABSTRACTDNA methylation (DNAme) is a key epigenetic mark that regulates critical biological processes maintaining overall genome stability. Given its pleiotropic function, studies of DNAme dynamics are crucial, but currently available tools to interfere with DNAme have limitations and major cytotoxic side effects. Here, we present untransformed and cancer cell models that allow inducible and reversible global modulation of DNAme through DNMT1 depletion. By dynamically assessing the effects of induced passive demethylation through cell divisions at both the whole genome and locus-specific level, we reveal a cooperative activity between DNMT1 and DNMT3B to maintain and control DNAme. Moreover, we show that gradual loss of DNAme is accompanied by progressive and reversible changes in heterochromatin abundance, compartmentalization, and peripheral localization. DNA methylation loss coincided with a gradual reduction of cell fitness due to G1 arrest, but with minor level of mitotic failure. Altogether, this powerful system allows DNMT and DNA methylation studies with fine temporal resolution, which may help to reveal the etiologic link between DNA methylation dysfunction and human disease.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献