Improving the study of RNA dynamics through advances in RNA-seq with metabolic labeling and nucleotide-recoding chemistry

Author:

Zimmer Joshua T.ORCID,Vock Isaac W.ORCID,Schofield Jeremy A.ORCID,Kiefer LeaORCID,Moon Michelle H.ORCID,Simon Matthew D.ORCID

Abstract

AbstractRNA metabolic labeling using 4-thiouridine (s4U) captures the dynamics of RNA synthesis and decay. The power of this approach is dependent on appropriate quantification of labeled and unlabeled sequencing reads, which can be compromised by the apparent loss of s4U-labeled reads in a process we refer to as dropout. Here we show that s4U-containing transcripts can be selectively lost when RNA samples are handled under sub-optimal conditions, but that this loss can be minimized using an optimized protocol. We demonstrate a second cause of dropout in nucleotide recoding and RNA sequencing (NR-seq) experiments that is computational and downstream of library preparation. NR-seq experiments involve chemically converting s4U from a uridine analog to a cytidine analog and using the apparent T-to-C mutations to identify the populations of newly synthesized RNA. We show that high levels of T-to-C mutations can prevent read alignment with some computational pipelines, but that this bias can be overcome using improved alignment pipelines. Importantly, kinetic parameter estimates are affected by dropout independent of the NR chemistry employed, and all chemistries are practically indistinguishable in bulk, short-read RNA-seq experiments. Dropout is an avoidable problem that can be identified by including unlabeled controls, and mitigated through improved sample handing and read alignment that together improve the robustness and reproducibility of NR-seq experiments.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3