How human-derived brain organoids are built differently from brain organoids derived of genetically-close relatives: A multi-scale hypothesis

Author:

Zhang Tao,Gupta Sarthak,Lancaster Madeline A.ORCID,Schwarz J. M.

Abstract

How genes affect tissue scale organization remains a longstanding biological puzzle. As experimental efforts are underway to solve this puzzle via quantification of gene expression, chromatin organization, cellular structure, and tissue structure, computational modeling efforts remain far behind. To help accelerate the computational modeling efforts, we review two recent publications, the first on a cellular-based model for tissues and the second on a model of a cell nucleus that includes a lamina shell and chromatin. We then address how the two models can be combined to ultimately test multiscale hypotheses linking the chromatin scale and the tissue scale. To be concrete, we turn to anin vitrosystem for the brain known as a brain organoid. We provide a multiscale hypothesis to distinguish structural differences between brain organoids built from induced-pluripotent human stem cells and from induced-pluripotent gorilla and chimpanzee stem cells. Recent experiments discover that a cell fate transition from neuroepithelial cells to radial glial cells includes a new intermediate state that is delayed in human-derived brain organoids as compared to their genetically-close relatives, which significantly narrows and lengthens the cells on the apical side [1]. Additional experiments revealed that the protein ZEB2 plays a major role in the emergence of this new intermediate state with ZEB2 mRNA levels peaking at the onset of the emergence [1]. We postulate that the enhancement of ZEB2 expression driving this intermediate state is potentially due to chromatin reorganization. More precisely, there exists critical strain triggering the reorganization that is higher for human-derived stem cells, thereby resulting in a delay. Such a hypothesis can readily be tested experimentally within individual cells and within brain organoids as well as computationally to help work towards solving the gene-to-tissue organization puzzle.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3