Probing macromolecular crowding at the lipid membrane interface with genetically-encoded sensors

Author:

Löwe Maryna,Hänsch Sebastian,Hachani Eymen,Schmitt Lutz,Weidtkamp-Peters Stefanie,Kedrov Alexej

Abstract

AbstractBiochemical processes within the living cell occur in a highly crowded environment. The phenomenon of macromolecular crowding is not an exclusive feature of the cytoplasm and can be observed in the densely protein-packed, nonhomogeneous cellular membranes and at the membrane interfaces. Crowding affects diffusional and conformational dynamics of proteins within the lipid bilayer, and modulates the membrane organization. However, the non-invasive quantification of the membrane crowding is not trivial. Here, we developed the genetically- encoded fluorescence-based sensor for probing the macromolecular crowding at the membrane interfaces. Two sensor variants, both composed of fluorescent proteins and a membrane anchor, but differing by the flexible linker domains were characterizedin vitro, and the procedures for the membrane reconstitution were established. Lateral pressure induced by membrane-tethered synthetic and protein crowders altered the sensors’ conformation, causing increase in the intramolecular Förster’s resonance energy transfer. The effect of protein crowders only weakly correlated with their molecular weight, suggesting that other factors, such as shape and charge play role in the quinary interactions. Upon their expression, the designed sensors were localized to the inner membrane ofE. coli, and measurements performed in extracted membrane vesicles revealed low level of interfacial crowding. The sensors offer broad opportunities to study interfacial crowding in a complex environment of native membranes, and thus add to the toolbox of methods for studying membrane dynamics and proteostasis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3