Neuroactive metabolites and bile acids are altered in extremely premature infants with brain injury

Author:

Pristner Manuel,Wasinger Daniel,Seki David,Klebermaß-Schrehof Katrin,Berger Angelika,Berry David,Wisgrill Lukas,Warth Benedikt

Abstract

AbstractThe gut microbiome has been associated with pathological neurophysiological evolvement in extremely premature infants suffering from brain injury. The exact underlying mechanism and its associated metabolic signatures in infants are not fully understood. To decipher metabolite profiles linked to neonatal brain injury, we investigated the longitudinal fecal and plasma metabolome of 51 extremely premature infants using LC-HRMS-based untargeted metabolomics. This was expanded by an investigation of bile acids and amidated bile acid conjugates in feces and plasma by LC-MS/MS-based targeted metabolomics. The resulting data was integrated with 16S rRNA gene amplicon gut microbiome profiles as well as patient cytokine, growth factor and T-cell profiles. We identified an early onset of differentiation in neuroactive metabolites and bile acids between infants with and without brain injury. We detected several bacterially-derived bile acid amino acid conjugates and secondary bile acids in the plasma already three days after delivery, indicating the early establishment of a metabolically active gut microbiome. These results give new insights into the early life metabolome of extremely premature infants.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3