Prolonged Cell Cycle Arrest in Response to DNA damage in Yeast Requires the Maintenance of DNA Damage Signaling and the Spindle Assembly Checkpoint

Author:

Zhou Felix Y.ORCID,Waterman David P.,Caban-Penix Suhaily,Memisoglu GonenORCID,Eapen Vinay V.,Haber James E.ORCID

Abstract

AbstractCells evoke the DNA damage checkpoint (DDC) to inhibit mitosis in the presence of DNA double-strand breaks (DSBs) to allow more time for DNA repair. In budding yeast, a single irreparable DSB is sufficient to activate the DDC and induce cell cycle arrest prior to anaphase for about 12 to 15 hours, after which cells “adapt” to the damage by extinguishing the DDC and resuming the cell cycle. While activation of the DNA damage-dependent cell cycle arrest is well-understood, how it is maintained remains unclear. To address this, we conditionally depleted key DDC proteins after the DDC was fully activated and monitored changes in the maintenance of cell cycle arrest. Degradation of Ddc2ATRIP, Rad9, Rad24, or Rad53CHK2results in premature resumption of the cell cycle, indicating that these DDC factors are required both to establish and to maintain the arrest. Dun1 is required for establishment, but not maintenance of arrest, whereas Chk1 is required for prolonged maintenance but not for initial establishment of the mitotic arrest. When the cells are challenged with 2 persistent DSBs, they remain permanently arrested. This permanent arrest is initially dependent on the continuous presence of Ddc2 and Rad53; however, after 15 hours both proteins become dispensable. Instead, the continued mitotic arrest is sustained by spindle-assembly checkpoint (SAC) proteins Mad1, Mad2, and Bub2 but not by Bub2’s binding partner Bfa1. These data suggest that prolonged cell cycle arrest in response to 2 DSBs is achieved by a handoff from the DDC to specific components of the SAC. Furthermore, the establishment and maintenance of DNA damage-induced cell cycle arrest requires overlapping but different sets of factors.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3