Decoding fMRI Data: A Comparison Between Support Vector Machines and Deep Neural Networks

Author:

Liang YunORCID,Bo KeORCID,Meyyappan Sreenivasan,Ding Mingzhou

Abstract

AbstractMultivoxel pattern analysis (MVPA) examines the differences in fMRI activation patterns associated with different cognitive conditions and provides information not possible with the conventional univariate analysis. Support vector machines (SVMs) are the predominant machine learning method in MVPA. SVMs are intuitive and easy to apply. The limitation is that it is a linear method and mainly suitable for analyzing data that are linearly separable. Convolutional neural networks (CNNs), a class of AI models originally developed for object recognition, are known to have the ability to approximate nonlinear relationships. CNNs are rapidly becoming an alternative to SVMs. The purpose of this study is to compare the two methods when they are applied to the same datasets. Two datasets were considered: (1) fMRI data collected from participants during a cued visual spatial attention task (the attention dataset) and (2) fMRI data collected from participants viewing natural images containing varying degrees of affective content (the emotion dataset). We found that (1) both SVM and CNN are able to achieve above chance level decoding accuracies for attention control and emotion processing in both the primary visual cortex and the whole brain with, (2) the CNN decoding accuracies are consistently higher than that of the SVM, (3) the SVM and CNN decoding accuracies are generally not correlated with each other, and (4) the heatmaps derived from SVM and CNN are not significantly overlapping. These results suggest that (1) there are both linearly separable features and nonlinearly separable features in fMRI data that distinguish cognitive conditions and (2) applying both SVM and CNN to the same data may yield a more comprehensive understanding of neuroimaging data.Key pointsWe compared the performance and characteristics of SVM and CNN, two major methods in MVPA analysis of neuroimaging data, by applying them to the same two fMRI datasets.Both SVM and CNN achieved decoding accuracies above chance level for both datasets in the chosen ROIs and the CNN decoding accuracies were consistently higher than those of SVM.The heatmaps derived from SVM and CNN, which assess the contribution of voxels or brain regions to MVPA decoding performance, showed no significant overlap, providing evidence that the two methods depend on distinct brain activity patterns for decoding cognitive conditions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3