Towards Computing Attributions for Dimensionality Reduction Techniques

Author:

Scicluna MatthewORCID,Grenier Jean-Christophe,Poujol Raphaël,Lemieux SébastienORCID,Hussin Julie GORCID

Abstract

AbstractWe describe the problem of computing local feature attributions for dimensionality reduction methods. We use one such method that is well established within the context of supervised classification – using the gradients of target outputs with respect to the inputs – on the popular dimensionality reduction technique t-SNE, widely used in analyses of biological data. We provide an efficient implementation for the gradient computation for this dimensionality reduction technique. We show that our explanations identify significant features using novel validation methodology; using synthetic datasets and the popular MNIST benchmark dataset. We then demonstrate the practical utility of our algorithm by showing that it can produce explanations that agree with domain knowledge on a SARS-CoV-2 sequence dataset. Throughout, we provide a road map so that similar explanation methods could be applied to other dimensionality reduction techniques to rigorously analyze biological datasets.

Publisher

Cold Spring Harbor Laboratory

Reference32 articles.

1. Julius Adebayo , Justin Gilmer , Michael Muelly , Ian Goodfellow , Moritz Hardt , and Been Kim . Sanity checks for saliency maps. In S. Bengio , H. Wallach , H. Larochelle , K. Grauman , N. Cesa-Bianchi , and R. Garnett , editors, Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

2. Biodiversity on the Rocks: Macrofauna Inhabiting Authigenic Carbonate at Costa Rica Methane Seeps

3. Steven Bird , Ewan Klein , and Edward Loper . Natural language processing with Python: analyzing text with the natural language toolkit. “ O’Reilly Media, Inc.”, 2009.

4. Wieland Brendel and Matthias Bethge . Approximating cnns with bag-of-local-features models works surprisingly well on imagenet. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6–9, 2019. OpenReview.net, 2019.

5. Data, disease and diplomacy: Gisaid’s innovative contribution to global health;Stefan Elbe and Gemma Buckland-Merrett;Global challenges,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3