Evolutionary adaptation from hydrolytic to oxygenolytic catalysis

Author:

Bui Soi,Gil-Guerrero Sara,van der Linden Peter,Carpentier Philippe,Ceccarelli Matteo,Jambrina Pablo G.,Steiner Roberto A.ORCID

Abstract

AbstractProtein fold adaptation to novel enzymatic reactions is a fundamental evolutionary process. Cofactor-independent oxygenases degradingN-heteroaromatic substrates belong to the α/β-hydrolase (ABH) fold superfamily that typically does not catalyze oxygenation reactions. Here, we have integrated crystallographic analyses at normoxic and hyperoxic conditions with molecular dynamics and quantum mechanical calculations to investigate its prototypic 1-H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (HOD) member. O2localization to the “oxyanion hole”, where catalysis occurs, is an unfavorable event and the direct competition between dioxygen and water for this site is modulated by the “nucleophilic elbow” residue. A hydrophobic pocket that overlaps with the organic substrate binding site can act as a proximal dioxygen reservoir. Freeze-trap pressurization allowed to determine the structure of the ternary complex with a substrate analogue and O2bound at the oxyanion hole. Theoretical calculations reveal that O2orientation is coupled to the charge of the bound organic ligand. When 1-H-3-hydroxy-4-oxoquinaldine is uncharged, O2binds with its molecular axis along the ligand’s C2-C4 direction in full agreement with the crystal structure. Substrate activation triggered by deprotonation of its 3-OH group by the His-Asp dyad, rotates O2by approximately 60 degrees. This geometry maximizes the charge-transfer between the substrate and O2thus weakening the double bond of the latter. Electron density transfer to the O2(π*) orbital promotes the formation of the peroxide intermediate via intersystem crossing that is rate-determining. Our work provides a detailed picture of how evolution has repurposed the ABH-fold architecture and its simple catalytic machinery to accomplish metal-independent oxygenation.SignificanceMany of the current O2-dependent enzymes have evolved from classes that existed prior to the switch from a reducing to an oxidative atmosphere and whose original functions are unrelated to dioxygen chemistry. A group of bacterial dioxygenases belong to the α/β-hydrolase (ABH) fold superfamily that typically does not catalyze oxygenation reactions. These enzymes degrade theirN-heteroaromatic substrates in a cofactor-independent manner relying only on the simple nucleophile-histidine-acid ABH-fold catalytic toolbox. In this work we show how O2localizes at the catalytic site by taking advantage of multiple strategies that minimize the strong competition by water, the co-substrate in the ancestral hydrolytic enzyme. We also show that substrate activation by the His-Asp catalytic dyad leads a ligand-O2complex that maximizes the electron transfer from the organic substrate to O2, thus promoting intersystem crossing and circumventing the spin-forbiddeness of the reaction. Overall, our work explains how evolution has repurposed the ABH-fold architecture and its simple catalytic machinery to accomplish spin-restricted metal-independent oxygenation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3