Seasonally variable thermal performance curves prevent adverse effects of heatwaves

Author:

Sasaki Matthew C.ORCID,Finiguerra MichaelORCID,Dam Hans G.ORCID

Abstract

AbstractThe increasing frequency and intensity of heatwaves may represent a significant challenge for predicting vulnerability of populations in a warming ocean. The direct impacts of heatwaves on populations depend on the relative position of environmental temperatures to the thermal performance curve optima. If thermal performance curves are static, the effects of heatwaves may therefore change seasonally over the annual temperature cycle. However, these seasonal changes in the effects of heatwaves may be dampened by corresponding variation in thermal performance curves which, in organisms with relatively short generation times, may be driven by phenotypic plasticity as well as genetic differentiation. Here we investigate the effects of seasonal timing and duration on the impacts of heatwaves in the ecologically important copepod congenersAcartia tonsaandAcartia hudsonica, and test the hypotheses that 1) seasonal variation in thermal performance curves will reduce overall population vulnerability to heatwaves, and 2) that seasonal variation in TPCs will prevent negative transgenerational effects of heatwave. We characterized seasonal variation in thermal performance curves for several fitness-related traits. These experiments uncovered strong seasonal variation in the thermal performance curves ofAcartia tonsa, and indicate that this variation buffers against negative effects of simulated heatwaves. We also quantified both direct and trans-generational effects of different duration heatwaves on copepods collected at various times throughout the season using simulated heatwave experiments. There was no consistent pattern in the transgenerational effects of parental exposure to heatwaves, which may indicate that seasonal variation in thermal performance curves reduces the effects of parental stress on offspring performance. Our results show that seasonal variation in thermal performance curves will likely play an important role in limiting the adverse effects of heatwaves on populations.

Publisher

Cold Spring Harbor Laboratory

Reference40 articles.

1. Variability approaching the thermal limits can drive diatom com-munity dynamics;Limnology and Oceanography,2020

2. Angilletta, M.J. (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford biology. Oxford University Press, Oxford ; New York.

3. A general theory for tempera-ture dependence in biology;Proceedings of the National Academy of Sciences,2022

4. Limited plasticity in thermally tolerant ectotherm populations: ev-idence for a trade-off;Proceedings of the Royal Society B: Biological Sciences,2021

5. Why and how we should join the shift from significance testing to estimation;Journal of Evolutionary Biology,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3