Water will find its way: transport through narrow tunnels in hydrolases

Author:

Sequeiros-Borja CarlosORCID,Thirunavukarasu Aravind SelvaramORCID,Dongmo Foumthuim Cedrix J.ORCID,Brezovsky JanORCID

Abstract

ABSTRACTAn aqueous environment is vital for life as we know it, and water is essential for nearly all biochemical processes at a molecular level. Proteins utilize water molecules in various ways. Consequently, proteins must transport water molecules across their internal network of tunnels to reach the desired action sites, either within them or functioning as molecular pipes to control cellular osmotic pressure. Despite water playing a crucial role in enzymatic activity and stability, its transport has been largely overlooked, with studies primarily focusing on water transport across membrane proteins. The transport of molecules through a protein’s tunnel network is challenging to study experimentally, making molecular dynamics simulations the most popular approach for investigating such events. In this study, we focused on the transport of water molecules across three different α/β-hydrolases: haloalkane dehalogenase, epoxide hydrolase, and lipase. Using a 5 μs adaptive simulation per system, we observed that only a few tunnels were responsible for the majority of water transport in dehalogenase, in contrast to a higher diversity of tunnels in other enzymes. Interestingly, water molecules could traverse narrow tunnels with sub-angstrom bottlenecks, which is surprising given the commonly accepted water molecule radius of 1.4 Å. Our analysis of the transport events in such narrow tunnels revealed a markedly increased number of hydrogen bonds formed between the water molecules and the protein, likely compensating for the steric penalty of the process. Overall, these commonly disregarded narrow tunnels accounted for ∼20% of the total water transport observed, emphasizing the need to surpass the standard geometrical limits on the functional tunnels to properly account for relevant transport processes. Finally, we demonstrated how the obtained insights could be applied to explain the differences in a mutant of the human soluble epoxide hydrolase associated with a higher incidence of ischemic stroke.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3