Immunoprecipitation of RNA-DNA hybrid interacting proteins inTrypanosoma bruceireveals conserved and novel activities, including in host immune evasion by antigenic variation

Author:

Girasol Mark J.,Briggs Emma M.,Marques Catarina A.,Batista José M.,Beraldi Dario,Burchmore Richard,Lemgruber Leandro,McCulloch RichardORCID

Abstract

AbstractRNA-DNA hybrids are widespread epigenetic features of genomes that provide a growing range of activities in transcription, chromatin and DNA replication and repair. Understanding of these diverse functions has been advanced by characterising the proteins that interact with the hybrids, with all such studies revealing hundreds of potential interactors. However, all interaction analyses to date have focused on mammalian cells, and so it is unclear if a similar spectrum of RNA-DNA hybrid interactors is found in other eukaryotes, thus limiting our understanding of the conserved and lineage-specific activities linked to these genetic structures. The African trypanosome is a compelling organism in which to address these questions. As a divergent single-cell eukaryotic parasite of the Discoba grouping,Trypanosoma bruceidisplays substantial divergence in several aspects of core biology from its mammalian host and, unusually for a protist, has well-developed tools for molecular genetic analysis. For these reasons, we used DNA-RNA hybrid immunoprecipitation coupled with mass spectrometry to reveal 602 putative interactors inT. bruceimammal- or insect vector-infective stage cells. We show that the approach selects for a subset of the parasite proteome and reveals a range of predicted RNA-DNA hybrid associated activities, some overlapping with similar studies in mammals. We demonstrate that loss of three factors, two putative helicases and a RAD51 paralogue, impact onT. bruceinuclear RNA-DNA hybrid and DNA damage levels. Moreover, loss of each affects the operation of the crucial parasite immune survival mechanism of antigenic variation. Thus, our work reveals the broad range of activities contributed by RNA-DNA hybrids toT. bruceibiology, including new functions in host immune evasion as well as many conserved with mammals, and so likely fundamental to eukaryotic genome function.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3