Enhanced Airway Epithelial Response to SARS-CoV-2 Infection in Children is Critically Tuned by the Cross-Talk Between Immune and Epithelial Cells

Author:

Magalhães Vladimir G.ORCID,Lukassen Sören,Drechsler Maike,Loske Jennifer,Burkart Sandy S.ORCID,Wüst Sandra,Jacobsen Eva-Maria,Röhmel Jobst,Mall Marcus A.,Debatin Klaus-Michael,Eils Roland,Autenrieth Stella,Janda Aleš,Lehmann Irina,Binder MarcoORCID

Abstract

AbstractTo cope with novel virus infections to which no prior adaptive immunity exists, the body strongly relies on the innate immune system. In such cases, including infections with SARS-CoV-2, children tend to fair better than adults. In the context of COVID-19, it became evident that a rapid interferon response at the site of primary infection is key for successful control of the virus and prevention of severe disease. The airway epithelium of children was shown to exhibit a primed state already at homeostasis and to respond particularly well to SARS-CoV-2 infection. However, the underlying mechanism for this priming remained elusive. Here we show that interactions between airway mucosal immune cells and epithelial cells are stronger in children, and via cytokine-mediated signaling lead to IRF-1-dependent upregulation of the viral sensors RIG-I and MDA5. Based on a cellularin vitromodel we show that stimulated human peripheral blood mononuclear cells (PBMC) can induce a robust interferon-beta response towards SARS-CoV-2 in a lung epithelial cell line otherwise unresponsive to this virus. This is mediated by type I interferon, interferon-gamma and TNF, and requires induction of both, RIG-I and MDA5. In single cell-analysis of nasal swab samples the same cytokines are found to be elevated in mucosal immune cells of children, correlating with elevated epithelial expression of viral sensors.In vitroanalysis of PBMC derived from healthy adolescents and adults confirm that immune cells of younger individuals show increased cytokine production and potential to prime epithelial cells. In co-culture with SARS-CoV-2-infected A549 cells, PBMC from adolescents significantly enhance the antiviral response. Taken together, our study suggests that higher numbers and a more vigorous activity of innate immune cells in the airway mucosa of children tune the set-point of the epithelial antiviral system. This likely is a major contributor to the robust immune response to SARS-CoV-2 in children. Our findings shed light on the molecular underpinnings of the stunning resilience of children towards severe COVID-19, and may propose a novel concept for immunoprophylactic treatments.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3