Lipids of different phytoplankton groups differ in sensitivity to degradation: implications for carbon export

Author:

Godrijan JelenaORCID,Pfannkuchen Daniela MarićORCID,Djakovac TamaraORCID,Frka SanjaORCID,Gašparović BlaženkaORCID

Abstract

AbstractThe future of life on Earth depends on how the ocean might change, as it plays an important role in mitigating the effects of global warming. The main role is played by phytoplankton. Not only are phytoplankton the base of the oceans’ food web, but they also play an important role in the biological carbon pump (BCP), the process of forming organic matter (OM) and transporting it to the deep sea, representing a sink of atmospheric CO2. Lipids are considered important vectors for carbon sequestration. A change in the phytoplankton community composition as a result of ocean warming is expected to affect the BCP. Many predictions indicate a dominance of small at the expense of large phytoplankton. To gain insight into interplay between the phytoplankton community structure, lipid production and degradation and adverse environmental conditions, we analyzed phytoplankton composition, POC and its lipid fraction in the northern Adriatic over a period from winter to summer at seven stations with a gradient of trophic conditions. We found that at high salinity and low nutrient content, where nanophytoplankton prevailed over diatoms, the newly fixed carbon is substantially directed toward the synthesis of lipids. Lipids produced by nanophytoplankton, coccolithophores and phytoflagellates, are more resistant to degradation than those produced by diatoms. This suggests a more successful lipid carbon sink of nanophytoplankton and thus a negative feedback on global warming. The difference in lipid degradability is discussed as a difference in the size of the cell phycosphere. We hypothesize that the lipids of nanophytoplankton are less degradable due to the small phycosphere with a poorer bacterial community and consequently a lower lipid degradation rate compared to diatoms. The chemical composition of the lipids of the different phytoplankton groups could have a different susceptibility to degradation, which could also contribute to the differences in lipid degradability.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3