Analysis of ageing-dependent thiol oxidation reveals early oxidation of proteins involved in core proteostasis functions

Author:

Jonak KatarzynaORCID,Suppanz Ida,Bender Julian,Chacinska Agnieszka,Warscheid Bettina,Topf UlrikeORCID

Abstract

AbstractOxidants have a profound impact on biological systems in physiology and under pathological conditions. Oxidative post-translational modifications of protein thiols are well-recognized as a readily occurring alteration of proteins. Changes in protein thiol redox state can modify the function of proteins and thus can control cellular processes. However, chronic oxidative stress causes oxidative damage to proteins with detrimental consequences for cellular function and organismal health. The development of techniques enabling the site-specific and quantitative assessment of protein thiol oxidation on a proteome-wide scale significantly expanded the number of known oxidation-sensitive protein thiols. However, lacking behind are large-scale data on the redox state of proteins during ageing, a physiological process accompanied by increased levels of endogenous oxidants. Here, we present the landscape of protein thiol oxidation in chronologically aged wild-typeSaccharomyces cerevisiaein a time-dependent manner. Our data determine early oxidation targets in key biological processes governing thede novoproduction of proteins, folding, and protein degradation. Comparison to existing datasets reveals evolutionary conservation of early oxidation targets. To facilitate accessibility and cross-species comparison of the experimental data obtained, we created the OxiAge Database, a free online tool for the research community that integrates current datasets on thiol redoxomes in aged yeast, nematodeCaenorhabditis elegans,fruit flyDrosophila melanogaster, and mouseMus musculus. The database can be accessed through an interactive web application athttp://oxiage.ibb.waw.pl.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3