Proximal Molecular Probe Transfer (PROMPT), a new approach for identifying sites of protein/nucleic acid interaction in cells by correlated light and electron microscopy

Author:

Castillon Guillaume AORCID,Phan Sebastien,Hu Junru,Boassa DanielaORCID,Adams Stephen RORCID,Ellisman Mark HORCID

Abstract

ABSTRACTThe binding and interaction of proteins with nucleic acids such as DNA and RNA constitutes a fundamental biochemical and biophysical process in all living organisms. Identifying and visualizing such temporal interactions in cells is key to understanding their function. To image sites of these events in cells across scales, we developed a method, named PROMPT for PROximal Molecular Probe Transfer, which is applicable to both light and correlative electron microscopy. This method relies on the transfer of a bound photosensitizer from a protein known to associate with specific nucleic acid sequence, allowing the marking of the binding site on DNA or RNA in fixed cells. The method produces a fluorescent mark at the site of their interaction, that can be made electron dense and reimaged at high resolution in the electron microscope. As proof of principle, we labeledin situthe interaction sites between the histone H2B and nuclear DNA. As an example of application for specific RNA localizations we labeled different nuclear and nucleolar fractions of the protein Fibrillarin to mark and locate where it associates with RNAs, also using electron tomography. While the current PROMPT method is designed for microscopy, with minimal variations, it can be potentially expanded to analytical techniques.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3