KDM5-mediated activation of genes required for mitochondrial biology is necessary for viability inDrosophila

Author:

Rogers Michael FORCID,Marshall Owen JORCID,Secombe JulieORCID

Abstract

ABSTRACTThe precise coordination of gene expression is critical for developmental programs, and histone modifying proteins play important, conserved roles in fine-tuning transcription for these processes. One such family of proteins are KDM5 enzymes that interact with chromatin through demethylating H3K4me3 as well as demethylase-independent mechanisms that remain less understood. The singlekdm5ortholog inDrosophilais an essential gene that has crucial developmental roles in a neuroendocrine tissue, the prothoracic gland. To characterize the regulatory functions of KDM5, we examined its role in coordinating gene expression programs critical to cellular homeostasis and organismal viability in larval prothoracic gland cells. Utilizing targeted genetic experiments, we analyzed the relationship between critical cell signaling pathways, particularly MAPK, and the lethality caused by loss ofkdm5. Integrating KDM5 genome binding and transcriptomic data revealed conserved and tissue-specific transcriptional programs regulated by KDM5. These experiments highlighted a role for KDM5 in regulating the expression of a set of genes critical for the function and maintenance of mitochondria. This gene expression program is key to the essential functions of KDM5, as expression of the mitochondrial biogenesis transcription factor Ets97D/Delg, theDrosophilahomolog of GABPα, in prothoracic gland cells suppressed the lethality ofkdm5null animals. Consistent with this, we observed morphological changes to mitochondria in the prothoracic gland ofkdm5null mutant animals. Together, these data establish KDM5-mediated cellular functions that are both important for normal development and could also contribute to KDM5-linked disorders when dysregulated.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3