RAMZIS: a bioinformatic toolkit for rigorous assessment of the alterations to glycoprotein structure that occur during biological processes

Author:

Hackett William EdwinORCID,Chang DeborahORCID,Carvalho Luis,Zaia Joseph

Abstract

AbstractMotivationGlycosylation elaborates the structures and functions of glycoproteins; glycoproteins are common post-translationally modified proteins and are heterogeneous and non-deterministically synthesized as an evolutionarily driven mechanism that elaborates the functions of glycosylated gene products. While glycoproteins account for approximately half of all proteins, their macro- and micro-heterogeneity requires specialized proteomics data analysis methods as a given glycosite can be divided into several glycosylated forms, each of which must be quantified. Sampling of heterogeneous glycopeptides is limited by mass spectrometer speed and sensitivity, resulting in missing values. In conjunction with the low sample size inherent to glycoproteomics, this necessitated specialized statistical metrics to identify if observed changes in glycopeptide abundances are biologically significant or due to data quality limitations.ResultsWe developed an R package, Relative Assessment ofm/zIdentifications by Similarity (RAMZIS), that uses similarity metrics to guide biomedical researchers to a more rigorous interpretation of glycoproteomics data. RAMZIS uses contextual similarity to assess the quality of mass spectral data and generates graphical output that demonstrates the likelihood of finding biologically significant differences in glycosylation abundance dataset. Investigators can assess dataset quality, holistically differentiate glycosites, and identify which glycopeptides are responsible for glycosylation pattern expression change. Herein RAMZIS approach is validated by theoretical cases and by a proof-of-concept application. RAMZIS enables comparison between datasets too stochastic, small, or sparse for interpolation while acknowledging these issues in its assessment. Using our tool, researchers will be able to rigorously define the role of glycosylation and the changes that occur during biological processes.Availabilityhttps://github.com/WillHackett22/RAMZISContactJoseph Zaia, Boston University Medical Campus, 670 Albany St., rm 509, Boston, MA 02118 USA, (e)jzaia@bu.edu, (v) 1-617-358-2429Supplementary informationSupplementary data are available

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3