Lysine 117 on ataxin-3 modulates toxicity inDrosophilamodels of Spinocerebellar Ataxia Type 3

Author:

Blount Jessica R.,Patel Nikhil C.,Libohova Kozeta,Harris Autumn L.,Tsou Wei-Ling,Sujkowski AlysonORCID,Todi Sokol V.ORCID

Abstract

ABSTRACTAtaxin-3 (Atxn3) is a deubiquitinase with a polyglutamine (polyQ) repeat tract whose abnormal expansion causes the neurodegenerative disease, Spinocerebellar Ataxia Type 3 (SCA3; also known as Machado-Joseph Disease). The ubiquitin chain cleavage properties of Atxn3 are enhanced when it is ubiquitinated at lysine (K) at position 117. K117-ubiqutinated Atxn3 cleaves poly-ubiquitin more rapidly in vitro compared to its unmodified counterpart and this residue is also important for Atxn3 roles in cell culture and inDrosophila melanogaster. How polyQ expansion causes SCA3 remains unclear. To gather insight into the biology of disease of SCA3, here we posited the question: is K117 important for toxicity caused by Atxn3? We generated transgenicDrosophilalines that express full-length, human, pathogenic Atxn3 with 80 polyQ with an intact or mutated K117. We found that K117 mutation mildly enhances the toxicity and aggregation of pathogenic Atxn3 inDrosophila. An additional transgenic line that expresses Atxn3 without any K residues confirms increased aggregation of pathogenic Atxn3 whose ubiquitination is perturbed. These findings suggest Atxn3 ubiquitination as a regulatory step of SCA3, in part by modulating its aggregation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3