Auranofin Inhibition of Thioredoxin Reductase Sensitizes Lung Neuroendocrine Tumor Cells (NETs) and Small Cell Lung Cancer (SCLC) Cells to Sorafenib as well as Inhibiting SCLC Xenograft Growth

Author:

Johnson Spenser S.ORCID,Liu Dijie,Ewald Jordan T.ORCID,Robles-Planells ClaudiaORCID,Christensen Keegan A.,Bayanbold Khaliunaa,Wels Brian R.,Solst Shane R.,O’Dorisio M. Sue,Allen Bryan G.,Menda Yusuf,Spitz Douglas R.,Fath Melissa A.ORCID

Abstract

AbstractThioredoxin Reductase (TrxR) is a key enzyme in hydroperoxide detoxification through peroxiredoxin enzymes and in thiol-mediated redox regulation of cell signaling. Because cancer cells produce increased steady-state levels of reactive oxygen species (ROS; i.e., superoxide and hydrogen peroxide), TrxR is currently being targeted in clinical trials using the anti-rheumatic drug, auranofin (AF). AF treatment decreased TrxR activity and clonogenic survival in small cell lung cancer (SCLC) cell lines (DMS273 and DMS53) as well as the lung atypical (neuroendocrine tumor) NET cell line H727. AF treatment also significantly sensitized DMS273 and H727 cell linesin vitroto sorafenib, a multi-kinase inhibitor that was shown to decrease intracellular glutathione. The pharmacokinetic and pharmacodynamic properties of AF treatment in a mouse SCLC xenograft model was examined to maximize inhibition of TrxR activity without causing toxicity. AF was administered intraperitoneally at 2 mg/kg or 4 mg/kg (IP) once (QD) or twice daily (BID) for 1 to 5 days in mice with DMS273 xenografts. Plasma levels of AF were 10-20 μM (determined by mass spectrometry of gold) and the optimal inhibition of TrxR (50 %) was obtained at 4 mg/kg once daily, with no effect on glutathione peroxidase 1 activity. When this daily AF treatment was extended for 14 days a significant prolongation of median survival from 19 to 23 days (p=0.04, N=30 controls, 28 AF) was observed without causing changes in animal bodyweight, CBCs, bone marrow toxicity, blood urea nitrogen, or creatinine. These results show that AF is an effective inhibitor of TrxR bothin vitroandin vivoin SCLC, capable of sensitizing NETs and SCLC to sorafenib, and supports the hypothesis that AF could be used as an adjuvant therapy with agents known to induce disruptions in thiol metabolism to enhance therapeutic efficacy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3