A Chemical Reaction Similarity-Based Prediction Algorithm Identifies the Multiple Taxa Required to Catalyze an Entire Metabolic Pathway of Dietary Flavonoids

Author:

Gulsan Ebru EceORCID,Nowshad Farrhin,Yamaguchi Pomaikaimaikalani,Dong Xiaokun,Jayaraman Arul,Lee KyongbumORCID

Abstract

AbstractFlavonoids are polyphenolic phytochemicals abundant in plant-based, health-promoting foods. They are only partially absorbed in the small intestine, and gut microbiota plays a significant role in their metabolism. As flavonoids are not natural substrates of gut bacterial enzymes, reactions of flavonoid metabolism have been attributed to the ability of general classes of enzymes to metabolize non-natural substrates. To systematically characterize this promiscuous enzyme activity, we developed a prediction tool that is based on chemical reaction similarity. The tool takes a list of enzymes or organisms to match microbial enzymes with their non-native flavonoid substrates and orphan reactions. We successfully predicted the promiscuous activity of known flavonoid-metabolizing bacterial and plant enzymes.Next, we used this tool to identify the multiple taxa required to catalyze an entire metabolic pathway of dietary flavonoids. Tilianin is a flavonoid-O-glycoside having biological and pharmacological activities, including neuroprotection. Using our prediction tool, we defined a novel bacterial pathway of tilianin metabolism that includes O-deglycosylation to acacetin, demethylation of acacetin to apigenin, and hydrogenation of apigenin to naringenin. We predicted and confirmed using in vitro experiments and LC-MS techniques that Bifidobacterium longum subsp.animalis,Blautia coccoidesandFlavonifractor plautiican catalyze this pathway. Prospectively, the prediction-validation methodology developed in this work could be used to systematically characterize gut microbial metabolism of dietary flavonoids and other phytochemicals.The bioactivities of flavonoids and their metabolic products can vary widely. We used an in vitro rat neuronal model to show that tilianin metabolites exhibit protective effect against H2O2through reactive oxygen species (Delepine et al.) scavenging activity and thus, improve cell viability, while the parent compound, tilianin, was ineffective. These results are important to understand the gut microbiota-dependent physiological effects of dietary flavonoids.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3