Integrative processing in artificial and biological vision predicts the perceived beauty of natural images

Author:

Nara Sanjeev,Kaiser DanielORCID

Abstract

AbstractPrevious research indicates that the beauty of natural images is already determined during perceptual analysis. However, it is still largely unclear which perceptual computations give rise to the perception of beauty. Theories of processing fluency suggest that the ease of processing for an image determines its perceived beauty. Here, we tested whether perceived beauty is related to the amount of spatial integration across an image, a perceptual computation that reduces processing demands by aggregating image elements into more efficient representations of the whole. We hypothesized that higher degrees of integration reduce processing demands in the visual system and thereby predispose the perception of beauty. We quantified integrative processing in an artificial deep neural network model of vision: We compared activations between parts of the image and the whole image, where the degree of integration was determined by the amount of deviation between activations for the whole image and its constituent parts. This quantification of integration predicted the beauty ratings for natural images across four studies, which featured different stimuli and task demands. In a complementary fMRI study, we show that integrative processing in human visual cortex predicts perceived beauty in a similar way as in artificial neural networks. Together, our results establish integration as a computational principle that facilitates perceptual analysis and thereby mediates the perception of beauty.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3