Global pathogenomic analysis identifies known and novel genetic antimicrobial resistance determinants in twelve species

Author:

Hyun Jason C.ORCID,Monk Jonathan M.ORCID,Szubin Richard,Hefner Ying,Palsson Bernhard O.ORCID

Abstract

AbstractSurveillance programs for managing antimicrobial resistance (AMR) have yielded thousands of genomes suited for data-driven mechanism discovery. We present a workflow integrating pangenomics, gene annotation, and machine learning to identify AMR genes at scale. Applied to 12 species, 27,155 genomes, and 69 drugs, we 1) found AMR gene transfer mostly confined within related species, with 925 genes in multiple species but just eight in multiple phylogenetic classes, 2) demonstrated that discovery-oriented support vector machines outperform contemporary methods at recovering known AMR genes, recovering 263 genes compared to 145 by Pyseer, and 3) identified 142 novel AMR gene candidates. Validation of two candidates inE. coliBW25113 revealed cases of conditional resistance:ΔcycAconferred ciprofloxacin resistance in minimal media with D-serine, andfrdDV111D conferred ampicillin resistance in the presence ofampCby modifying the overlapping promoter. We expect this approach to be adaptable to other species and phenotypes.

Publisher

Cold Spring Harbor Laboratory

Reference65 articles.

1. The antibiotic resistance crisis: part 1: causes and threats;P T,2015

2. Review on Antimicrobial Resistance. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. (2014).

3. Exploiting genomics to mitigate the public health impact of antimicrobial resistance;Genome Med,2022

4. A genomic data resource for predicting antimicrobial resistance from laboratory-derived antimicrobial susceptibility phenotypes;Brief. Bioinform,2021

5. Su, M. , Satola, S. W. & Read, T. D. Genome-Based Prediction of Bacterial Antibiotic Resistance. J. Clin. Microbiol. 57, (2019).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3