A CRISPR-induced DNA break can trigger crossover, chromosomal loss and chromothripsis-like rearrangements

Author:

Samach Aviva,Mafessoni Fabrizio,Gross Or,Melamed-Bessudo Cathy,Filler-Hayut Shdema,Dahan-Meir TalORCID,Amsellem Ziva,Pawlowski Wojciech P.ORCID,Levy Avraham A.ORCID

Abstract

AbstractThe fate of DNA double-strand breaks (DSBs) generated by the Cas9 nuclease has been thoroughly studied. Repair via non-homologous end-joining (NHEJ) or homologous recombination (HR) is the common outcome. However, little is known about unrepaired DSBs and the type of damage they can trigger in plants. In this work, we designed a new assay that detects loss of heterozygosity (LOH) in somatic cells, enabling the study of a broad range of DSB-induced genomic events. The system relies on a mapped phenotypic marker which produces a light purple color (Betalain pigment) in all plant tissues. Plants with sectors lacking the Betalain marker upon DSB induction between the marker and the centromere were tested for LOH events. Using this assay we detected a flower with a twin yellow and dark purple sector, corresponding to a germinally transmitted somatic crossover event. We also identified instances of small deletions of genomic regions spanning the T-DNA and whole chromosome loss. In addition, we show that major chromosomal rearrangements including loss of large fragments, inversions, and translocations were clearly associated with the CRISPR-induced DSB. Detailed characterization of complex rearrangements by whole genome sequencing, molecular, and cytological analyses, supports a model in which breakage-fusion-bridge cycle followed by chromothripsis-like rearrangements had been induced. Our LOH assay provides a new tool for precise breeding via targeted crossover detection. It also uncovers CRISPR mediated chromothripsis-lke events that had not been previously identified in plants.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3