Abstract
AbstractCyanobacteriochrome (CBCR) GAF domains bind bilin cofactors to confer sensory wavelengths important for various cyanobacterial photosensory processes. Many isolated GAF domains autocatalytically bind bilins, becoming fluorescent. The third GAF domain of CBCR Slr1393 fromSynechocystissp. PCC6803 binds phycocyanobilin (PCB) natively, yielding red/green photoswitching properties but also binds phycoerythrobilin (PEB). GAF3-PCB has low quantum yields but non-photoswitching GAF3-PEB is brighter, making it a promising platform for new genetically encoded fluorescent tools. GAF3, however, shows low PEB binding efficiency (chromophorylation) at ∼3% compared to total protein expressed inE. coli. Here we explored site-directed mutagenesis and plasmid-based methods to improve GAF3-PEB binding and demonstrate its utility as a fluorescent marker in live cells. We found that a single mutation improved chromophorylation while tuning the emission over ∼30 nm, likely by shifting autoisomerization of PEB to phycourobilin (PUB). Plasmid modifications also improved chromophorylation and moving from a dual to single plasmid system facilitated exploration of a range of mutants via site saturation mutagenesis and sequence truncation. Collectively, the PEB/PUB chromophorylation was raised by ∼7-fold. Moreover, we show that protein-chromophore interactions can tune autoisomerization of PEB to PUB in a GAF domain, which will facilitate future engineering of similar GAF domain-derived fluorescent proteins.
Publisher
Cold Spring Harbor Laboratory