Repair oligodendrocytes demyelinating and disintegrating damaged axons after injury

Author:

Nocera Gianluigi,Vaquié Adrien,Hertzog Nadège,Steil Katharina,Duque Santiago Luis Cañón,Miedema Johannes,Bagin Cansu,Tevosian Margaryta,Lutz Beat,Sharifi-Aghili Azadeh,Hegner Katharina,Vollmer Doris,Bang Seokyoung,Lee Seung-Ryeol,Jeon Noo Li,Keyse Stephen M,López Sofía Raigón,Jacob Claire

Abstract

AbstractAfter a spinal cord injury, axons fail to regrow, which results in permanent loss of function1. This is in contrast with peripheral axons that can regrow efficiently after injury2. These differences are partly due to the different plasticity of myelinating cells, Schwann cells and oligodendrocytes, in these two systems3. The molecular mechanisms underlying this different plasticity remain however poorly understood. Here, we show that the phosphatase Dusp64is a master inhibitor of oligodendrocyte plasticity after spinal cord injury. Dusp6 is rapidly downregulated in Schwann cells and upregulated in oligodendrocytes after axon injury. Simultaneously, the MAP kinases ERK1/2 are activated and the transcription factor c-Jun is upregulated in Schwann cells5,6, but not in oligodendrocytes. Ablation or inactivation of Dusp6 induces rapid ERK1/2 phosphorylation, c-Jun upregulation and filopodia formation in oligodendrocytes, leading to mechanically-induced, fast disintegration of distal ends of injured axons, myelin clearance and axonal regrowth. Together, our findings provide understanding of the mechanisms underlying the different plasticity of Schwann cells and oligodendrocytes after injury and a method to convert mature oligodendrocytes exhibiting inhibitory cues for axonal regrowth into repair oligodendrocytes reminiscent of repair Schwann cells. We show that repair oligodendrocytes successfully increase the compatibility of the spinal cord environment with axonal regrowth after injury, suggesting a potential use of repair oligodendrocytes as future therapeutic approach to treat spinal cord injuries.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3