Simultaneous carbon catabolite repression governs sugar and aromatic co-utilization inPseudomonas putidaM2

Author:

Shrestha Shilva,Awasthi Deepika,Chen Yan,Gin Jennifer,Petzold Christopher J.,Adams Paul D.,Simmons Blake A.,Singer Steven W.ORCID

Abstract

ABSTRACTPseudomonas putidahave emerged as promising biocatalysts for the conversion of sugars and aromatics obtained from lignocellulosic biomass. Understanding the role of carbon catabolite repression (CCR) in these strains is critical to optimize biomass conversion to fuels and chemicals. The CCR functioning inP. putidaM2, a strain capable of consuming both hexose and pentose sugars as well as aromatics, was investigated by cultivation experiments, proteomics, and CRISPRi-based gene repression. Strain M2 co-utilized sugars and aromatics simultaneously; however, during co-cultivation with glucose and phenylpropanoid aromatics (p-coumarate and ferulate), intermediates (4-hydroxybenzoate and vanillate) accumulated, and substrate consumption was incomplete. In contrast, xylose-aromatic consumption resulted in transient intermediate accumulation and complete aromatic consumption, while xylose was incompletely consumed. Proteomics analysis revealed that glucose exerted stronger repression than xylose on the aromatic catabolic proteins. Key glucose (Eda) and xylose (XylX) catabolic proteins were also identified at lower abundance during co-cultivation with aromatics implying simultaneous catabolite repression by sugars and aromatics. Downregulation ofcrcvia CRISPRi led to faster growth and uptake of glucose andp-coumarate in the CRISPRi strains compared to the control while no difference was observed on xylose +p-coumarate. The increased abundance of the Eda and amino acids biosynthesis proteins in the CRISPRi strain further supported these observations. Lastly, small RNAs (sRNAs) sequencing results showed that CrcY and CrcZ homologues levels in M2, previously identified inP. putidastrains, were lower under strong CCR (glucose +p-coumarate) condition compared to when repression was absent (p-coumarate or glucose only).IMPORTANCEA newly isolatedPseudomonas putidastrain,P. putidaM2, can utilize both hexose and pentose sugars as well as aromatics making it a promising host for the valorization of lignocellulosic biomass. Pseudomonads have developed a regulatory strategy, carbon catabolite repression, to control the assimilation of carbon sources in the environment. Carbon catabolite repression may impede the simultaneous and complete metabolism of sugars and aromatics present in lignocellulosic biomass and hinder the development of an efficient industrial biocatalyst. This study provides insight into the cellular physiology and proteome during mixed-substrate utilization inP. putidaM2. The phenotypic and proteomics results demonstrated simultaneous catabolite repression in the sugar-aromatic mixtures while the CRISPRi and sRNA sequencing demonstrated the potential role of thecrcgene and small RNAs in carbon catabolite repression.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3