Development and validation of a high throughput screening platform to enable target identification in skeletal muscle cells from Duchenne Muscular Dystrophy (DMD) patients

Author:

Hariharan Santosh,Lorintiu Oana,Lee Chia-Chin,Duchemin-Pelletier Eve,Li Xianfeng,Healy Aileen,Doyonnas Regis,Selig Luc,Poydenot Pauline,Ventre Erwann,Weston Andrea,Owens Jane,Christoforou NicolasORCID

Abstract

ABSTRACTDuchenne muscular dystrophy (DMD) is a progressive and fatal muscle degenerating disease caused by dystrophin deficiency. Effective methods for drug discovery for the treatment of DMD requires systems to be physiologically relevant, scalable, and effective. To this end, the Myoscreen platform offers a scalable and physiologically relevant system for generating and characterizing patient-derived myotubes. Morphological profiling is a powerful technique involving the simultaneous measurement of hundreds of morphological parameters from fluorescence microscopy images and using machine learning to predict cellular activity. Here, we describe combining the Myoscreen platform and high dimensional morphological profiling to accurately predict a phenotype associated with the lack of Dystrophin expression in patient derived myotubes. Using this methodology, we evaluated a series of Dystrophin-associated protein complex (DAPC) candidates and identified that the combination of Utrophin and α- Sarcoglycan yielded highest morphological differences between DMD and non-DMD donors. Finally, we validated this methodology by knocking down Dystrophin expression in non-DMD cells as well as introducing Dystrophin expression in DMD cells. Knocking down Dystrophin in non- DMD cells shifted their morphological profile to one that is similar to DMD cells while introducing Dystrophin in DMD cells shifted their morphological profile towards non-DMD cells. In conclusion, we have developed a platform that accurately predicts the DMD disease phenotype in a disease relevant cell type. Ultimately this platform may have wide applications in the drug development process include identification of disease modifier genes, screening of novel therapeutic moieties, and as a potency assay for future therapeutics.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3