MscS inactivation and recovery are slow voltage-dependent processes sensitive to interactions with lipids

Author:

Britt Madolyn,Moller Elissa,Maramba Joseph,Anishkin Andriy,Sukharev SergeiORCID

Abstract

AbstractMechanosensitive channel MscS, the major bacterial osmolyte release valve, shows a characteristic adaptive behavior. With a sharp onset of activating tension, the channel population readily opens, but under prolonged action of moderate near-threshold tension, it inactivates. The inactivated state is non-conductive and tension-insensitive, which suggests that the gate gets uncoupled from the lipid-facing domains. The kinetic rates for tension-driven opening-closing transitions are 4-6 orders of magnitude higher than the rates for inactivation and recovery. Here we show that inactivation is augmented and recovery is slowed down by depolarization. Hyperpolarization, conversely, impedes inactivation and speeds up recovery. We then address the question of whether protein-lipid interactions may set the rates and influence voltage dependence of inactivation and recovery. Mutations of conserved arginines 46 and 74 anchoring the lipid-facing helices to the inner membrane leaflet to tryptophans do not change the closing transitions, but instead change the kinetics of both inactivation and recovery and essentially eliminate their voltage-dependence. Uncharged polar substitutions (S or Q) for these anchors produce functional channels but increase the inactivation and reduce the recovery rates. The data suggest that it is not the activation and closing transitions, but rather the inactivation and recovery pathways that involve substantial rearrangements of the protein-lipid boundary associated with the separation of the lipid-facing helices from the gate. The discovery that hyperpolarization robustly assists MscS recovery indicates that membrane potential can regulate osmolyte release valves by putting them either on the ‘ready’ or ‘standby’ mode depending on the cell’s metabolic state.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanisms of PIEZO Channel Inactivation;International Journal of Molecular Sciences;2023-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3