Lysine-independent ubiquitination and degradation of REV-ERBα involves a bi-functional degradation control sequence at its N-terminus

Author:

Suen Ting-ChungORCID,DeBruyne Jason P.ORCID

Abstract

AbstractREV-ERBα and REV-ERBβ proteins play crucial roles in linking the circadian system to overt daily rhythms in mammalian physiology and behavior. In most tissues, REV-ERBα protein robustly cycles such that it is detected only within a tight interval of 4-6 hours each day, suggesting both its synthesis and degradation are tightly controlled. Several ubiquitin ligases are known to drive REV-ERBα degradation, but how they interact with REV-ERBα and which lysine residues they ubiquitinate to promote degradation are unknown. In this study, we attempted to identify both ubiquitin-ligase-binding and ubiquitination sites within REV-ERBα required for its degradation. Surprisingly, mutating all lysine residues, the common sites for ubiquitin conjugation, in REV-ERBα to arginines (K20R), did very little to impair its degradation in cells. K20R were degraded much faster by co-expression of two E3 ligases, SIAH2 or SPSB4, suggesting possible N-terminal ubiquitination. To explore this, we examined if small deletions at the N-terminus of REV-ERBα would alter its degradation. Interestingly, deletion of amino acid (AA) residues 2 to 9 (delAA2-9) clearly resulted in a less stable REV-ERBα. We found that it was the length (i.e. 8 AA), and not the specific sequence, that confers stability in this region. Simultaneously, we also mapped the interaction site of the E3 ligase SPSB4 to this same region, specifically requiring AA4-9 of REV-ERBα. Thus, the first 9 AA of REV-ERBα has two opposing roles in regulating REV-ERBα turnover. Further, deleting eight additional AAs (delAA2-17) from the N-terminus strongly prevents REV-ERBα degradation. Combined, these results suggest that complex interactions within the first 25AAs potentially act as an endogenous ‘switch’ that allows REV-ERBα to exist in a stabilized conformation in order to accumulate at one time of day, but then rapidly shifts to a destabilized form, to enhance its removal at the end of its daily cycle.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3