PandoGen: Generating complete instances of future SARS-CoV-2 sequences using Deep Learning

Author:

Ramachandran AnandORCID,Lumetta Steven S.,Chen Deming

Abstract

AbstractOne of the challenges in a viral pandemic is the emergence of novel variants with different phenotypical characteristics. An ability to forecast future viral individuals at the sequence level enables advance preparation by characterizing the sequences and closing vulnerabilities in current preventative and therapeutic methods. In this article, we explore, in the context of a viral pandemic, the problem of generating complete instances of undiscovered viral protein sequences, which have a high likelihood of being discovered in the future using protein language models. Current approaches to training these models fit model parameters to a known sequence set, which does not suit pandemic forecasting as future sequences differ from known sequences in some respects. To address this, we develop a novel method, called PandoGen, to train protein language models towards the pandemic protein forecasting task. PandoGen combines techniques such as synthetic data generation, conditional sequence generation, and reward-based learning, enabling the model to forecast future sequences, with a high propensity to spread. Applying our method to modeling the SARS-CoV-2 Spike protein sequence, we find empirically that our model forecasts twice as many novel sequences with five times the case counts compared to a model that is thirty times larger. Our method forecasts unseen lineages months in advance, whereas models 4× and 30× larger forecast almost no new lineages. When trained on data available up to a month before the onset of important Variants of Concern, our method consistently forecasts sequences belonging to those variants within tight sequence budgets.PandoGen is available at:https://github.com/UIUC-ChenLab/PandoGen

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3