A multiscale computational framework for the development of spines in molluscan shells

Author:

Moulton Derek E.ORCID,Aubert-Kato NathanaëlORCID,Almet Axel A.ORCID,Sato AtsukoORCID

Abstract

AbstractFrom mathematical models of growth to computer simulations of pigmentation, the study of shell formation has given rise to an abundant number of models, working at various scales. Yet, attempts to combine those models have remained sparse, due to the challenge of combining categorically different approaches. In this paper, we propose a framework to streamline the process of combining the molecular and tissue scales of shell formation. We choose these levels as a proxy to link the genotype level, which is better described by molecular models, and the phenotype level, which is better described by tissue-level mechanics. We also show how to connect observations on shell populations to the approach, resulting in collections of molecular parameters that may be associated with different populations of real shell specimens.The approach is as follows: we use a Quality-Diversity algorithm, a type of black-box optimization algorithm, to explore the range of concentration profiles emerging as solutions of a molecular model, and that define growth patterns for the mechanical model. At the same time, the mechanical model is simulated over a wide range of growth patterns, resulting in a variety of spine shapes. While time-consuming, these steps only need to be performed once and then function as look-up tables. Actual pictures of shell spines can then be matched against the list of existing spine shapes, yielding a potential growth pattern which, in turn, gives us matching molecular parameters. The framework is modular, such that models can be easily swapped without changing the overall working of the method. As a demonstration of the approach, we solve specific molecular and mechanical models, adapted from available theoretical studies on molluscan shells, and apply the multiscale framework to evaluate the characteristics of spines from three distinct populations ofTurbo sazae.Author summaryConnecting genotype to phenotype is a fundamental goal in developmental biology. While many studies examine this link in model organisms for which gene regulatory networks are well known, for non-model organisms, different techniques are required, and multiscale computational modeling offers a promising direction. In this paper, we develop a framework linking molecular-scale interactions to tissue-level growth and mechanics to organism-level characteristics in order to investigate spine formation inT. sazae, a species of mollusc that displays remarkable phenotypic plasticity in spine form. Our analysis uncovers a subtle but statistically significant difference in spine form between shell specimens collected from three different localities in Japan. Moreover, by tracing the difference in form through parametric differences in the multiscale framework, we provide mechanistic insight as to how environmental differences may translate to a change in form. The methodology we present may readily be extended to more detailed modeling of this system, and the conceptual framework is amenable for multiscale analysis in other systems.

Publisher

Cold Spring Harbor Laboratory

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3