Are fungi capacitors?

Author:

Szaciłowski Konrad,Beasley Alexander E.,Mech Krzysztof,Adamatzky Andrew

Abstract

AbstractThe emerging field of living technologies aims to create new functional hybrid materials in which living systems interface and interact with inanimate ones. Combining research into living technologies with emerging developments in computing architecture has enabled the generation of organic electronics from plants and slime mould. Here, we expand on this work by studying capacitive properties of a substrate colonised by mycelium of grey oyster fungi,Pleurotus ostreatus. Capacitors play a fundamental role in traditional analogue and digital electronic systems and have a range of uses including sensing, energy storage and filter circuits. Mycelium has the potential to be used as an organic replacement for traditional capacitor technology. Here, were show that the capacitance of mycelium is in the order of hundreds of picofarads and at the same time a voltage-dependent pseudocapacitance of the order of hundreds of microfarads. We also demonstrate that the charge density of the mycelium ‘dielectric’ decays rapidly with increasing distance from the source probes. This is important as it indicates that small cells of mycelium could be used as a charge carrier or storage medium, when employed as part of an array with reasonable density.

Publisher

Cold Spring Harbor Laboratory

Reference68 articles.

1. Andrew Adamatzky . Advances in Unconventional Computing. Springer, 2016.

2. Living technology: Exploiting life’s principles in technology;Artificial Life,2010

3. Organic electronics: introduction;IBM Journal of Research and Development,2001

4. M Klau s, Ullrich Scherf , et al. Organic Light Emitting Devices: Synthesis, Properties and Applications. John Wiley & Sons, 2006.

5. Simon, and Magnus Berggren. Electronic plants;Scientific Advances,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3