The temporal progression of immune remodeling during metastasis

Author:

McGinnis Christopher S.ORCID,Miao Zhuang,Reticker-Flynn Nathan E.ORCID,Winker JulianeORCID,Satpathy Ansuman T.ORCID

Abstract

SUMMARYTumor metastasis requires systemic remodeling of distant organ microenvironments which impacts immune cell phenotypes, population structure, and intercellular communication networks. However, our understanding of immune phenotypic dynamics in the metastatic niche remains incomplete. Here, we longitudinally assayed lung immune cell gene expression profiles in mice bearing PyMT-driven metastatic breast tumors from the onset of primary tumorigenesis, through formation of the pre-metastatic niche, to the final stages of metastatic outgrowth. Computational analysis of these data revealed an ordered series of immunological changes that correspond to metastatic progression. Specifically, we uncovered a TLR-NFκB myeloid inflammatory program which correlates with pre-metastatic niche formation and mirrors described signatures of CD14+ ‘activated’ MDSCs in the primary tumor. Moreover, we observed that cytotoxic NK cell proportions increased over time which illustrates how the PyMT lung metastatic niche is both inflammatory and immunosuppressive. Finally, we predicted metastasis-associated immune intercellular signaling interactions involvingIgf1andCcl6which may organize the metastatic niche. In summary, this work identifies novel immunological signatures of metastasis and discovers new details about established mechanisms that drive metastatic progression.Graphical abstractIn briefMcGinnis et al. report a longitudinal scRNA-seq atlas of lung immune cells in mice bearing PyMT-driven metastatic breast tumors and identify immune cell transcriptional states, shifts in population structure, and rewiring of cell-cell signaling networks which correlate with metastatic progression.HighlightsLongitudinal scRNA-seq reveals distinct stages of immune remodeling before, during, and after metastatic colonization in the lungs of PyMT mice.TLR-NFκB inflammation correlates with pre-metastatic niche formation and involves both tissue-resident and bone marrow-derived myeloid cell populations.Inflammatory lung myeloid cells mirror ‘activated’ primary tumor MDSCs, suggesting that primary tumor-derived cues induceCd14expression and TLR-NFκB inflammation in the lung.Lymphocytes contribute to the inflammatory and immunosuppressive lung metastatic microenvironment, highlighted by enrichment of cytotoxic NK cells in the lung over time.Cell-cell signaling network modeling predicts cell type-specificCcl6regulation and IGF1-IGF1R signaling between neutrophils and interstitial macrophages.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3