Artificial Intelligence-based Efficacy Prediction of Phase 3 Clinical Trial for Repurposing Heart Failure Therapies

Author:

Zong Nansu,Chowdhury Shaika,Zhou Shibo,Rajaganapathy Sivaraman,yu Yue,Wang Liewei,Dai Qiying,Bielinski Suzette J.,Chen Yongbin,Cerhan James R.

Abstract

AbstractIntroductionDrug repurposing involves finding new therapeutic uses for already approved drugs, which can save costs as their pharmacokinetics and pharmacodynamics are already known. Predicting efficacy based on clinical endpoints is valuable for designing phase 3 trials and making Go/No-Go decisions, given the potential for confounding effects in phase 2.ObjectivesThis study aims to predict the efficacy of the repurposed Heart Failure (HF) drugs for the Phase 3 Clinical Trial.MethodsOur study presents a comprehensive framework for predicting drug efficacy in phase 3 trials, which combines drug-target prediction using biomedical knowledgebases with statistical analysis of real-world data. We developed a novel drug-target prediction model that uses low-dimensional representations of drug chemical structures and gene sequences, and biomedical knowledgebase. Furthermore, we conducted statistical analyses of electronic health records to assess the effectiveness of repurposed drugs in relation to clinical measurements (e.g., NT-proBNP).ResultsWe identified 24 repurposed drugs (9 with a positive effect and 15 with a non-positive) for heart failure from 266 phase 3 clinical trials. We used 25 genes related to heart failure for drug-target prediction, as well as electronic health records (EHR) from the Mayo Clinic for screening, which contained over 58,000 heart failure patients treated with various drugs and categorized by heart failure subtypes. Our proposed drug-target predictive model performed exceptionally well in all seven tests in the BETA benchmark compared to the six cutting-edge baseline methods (i.e., best performed in 266 out of 404 tasks). For the overall prediction of the 24 drugs, our model achieved an AUCROC of 82.59% and PRAUC (average precision) of 73.39%.ConclusionThe study demonstrated exceptional results in predicting the efficacy of repurposed drugs for phase 3 clinical trials, highlighting the potential of this method to facilitate computational drug repurposing.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3