Leveraging inter-individual transcriptional correlation structure to infer discrete signaling mechanisms across metabolic tissues

Author:

Zhou Mingqi,Tamburini Ian J.,Van Cassandra,Molendijk JeffreyORCID,Nguyen Christy M,Chang Ivan Yao-Yi,Johnson Casey,Velez Leandro M.,Cheon Youngseo,Yeo Reichelle X.,Bae Hosung,Le Johnny,Larson Natalie,Pulido Ron,Filho Carlos,Jang Cholsoon,Marazzi Ivan,Justice Jamie N.ORCID,Pannunzio Nicholas,Hevener Andrea,Sparks Lauren M.,Kershaw Erin E.,Nicholas Dequina,Parker BenjaminORCID,Masri Selma,Seldin MarcusORCID

Abstract

Abstract/IntroductionInter-organ communication is a vital process to maintain physiologic homeostasis, and its dysregulation contributes to many human diseases. Beginning with the discovery of insulin over a century ago, characterization of molecules responsible for signal between tissues has required careful and elegant experimentation where these observations have been integral to deciphering physiology and disease. Given that circulating bioactive factors are stable in serum, occur naturally, and are easily assayed from blood, they present obvious focal molecules for therapeutic intervention and biomarker development. For example, physiologic dissection of the actions of soluble proteins such as proprotein convertase subtilisin/kexin type 9 (PCSK9) and glucagon-like peptide 1 (GLP1) have yielded among the most promising therapeutics to treat cardiovascular disease and obesity, respectively1–4. A major obstacle in the characterization of such soluble factors is that defining their tissues and pathways of action requires extensive experimental testing in cells and animal models. Recently, studies have shown that secreted proteins mediating inter-tissue signaling could be identified by “brute-force” surveys of all genes within RNA-sequencing measures across tissues within a population5–9. Expanding on this intuition, we reasoned that parallel strategies could be used to understand how individual genes mediate signaling across metabolic tissues through correlative analyses of gene variation between individuals. Thus, comparison of quantitative levels of gene expression relationships between organs in a population could aid in understanding cross-organ signaling. Here, we surveyed gene-gene correlation structure across 18 metabolic tissues in 310 human individuals and 7 tissues in 103 diverse strains of mice fed a normal chow or HFHS diet. Variation of genes such asFGF21, ADIPOQ, GCGandIL6showed enrichments which recapitulate experimental observations. Further, similar analyses were applied to explore both within-tissue signaling mechanisms (liverPCSK9) as well as genes encoding enzymes producing metabolites (adiposePNPLA2), where inter-individual correlation structure aligned with known roles for these critical metabolic pathways. Examination of sex hormone receptor correlations in mice highlighted the difference of tissue-specific variation in relationships with metabolic traits. We refer to this resource asGene-DerivedCorrelationsAcrossTissues (GD-CAT) where all tools and data are built into a web portal enabling users to perform these analyses without a single line of code (gdcat.org). This resource enables querying of any gene in any tissue to find correlated patterns of genes, cell types, pathways and network architectures across metabolic organs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3