Deconvolution of ex-vivo drug screening data and bulk tissue expression predicts the abundance and viability of cancer cell subpopulations

Author:

Coudray AlexandreORCID,Forey RomainORCID,Haro Benjamin Bejar,Martins Filipe,Carlevaro-Fita JoanaORCID,Sheppard ShaolineORCID,Offner Sandra Eloise,La Manno GioeleORCID,Obozinski GuillaumeORCID,Trono DidierORCID

Abstract

AbstractEx-vivodrug sensitivity screening (DSS) allows the prediction of cancer treatment effectiveness in a personalized fashion. However, it only provides a readout on mixtures of cells, potentially occulting important information on clinically relevant cell subtypes. To address this shortcoming, we developed a machine-learning framework to deconvolute bulk RNA expression matched with bulk drug sensitivity into cell subtype composition and cell subtype drug sensitivity. We first determined that our method could decipher the cellular composition of bulk samples with top-ranking accuracy compared to state-of-the-art deconvolution methods. We then optimized an algorithm capable of estimating cell subtype- and single-cell-specific drug sensitivity, which we evaluated by performingin-vitrodrug studies and in-depth simulations. We then applied our deconvolution strategy to Acute Myeloid Leukemia (AML) context using the beatAML cohort dataset, currently the most extensive database ofex-vivoDSS. We generated a landscape of cell subtype-specific drug sensitivity and focused on four therapeutic compounds predicted to target leukemic stem cells: crenalotinib, AZD1480, bosutinib, and venetoclax. We defined their efficacy at the single-cell level and characterized a population of venetoclax-resistant cancer stem-like cells. Our work provides an attractive new computational tool for drug development and precision medicine.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3