Abstract
AbstractMolecular subtyping is essential to infer tumor aggressiveness and predict prognosis. In practice, tumor profiling requires in-depth knowledge of bioinformatics tools involved in the processing and analysis of the generated data. Additionally, data incompatibility (e.g., microarray vs. RNA sequencing data) and technical and uncharacterized biological variance between training and test data can pose challenges in classifying individual samples. In this article, we provide a roadmap for implementing bioinformatics frameworks for molecular profiling of human cancers in a clinical diagnostic setting. We describe a framework for integrating several methods for quality control, normalization, batch correction, classification, and reporting and a use case of the framework in breast cancer.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献