Towards Longitudinal Glioma Segmentation: Evaluating combined pre- and post-treatment MRI training data for automated tumor segmentation using nnU-Net

Author:

Ranjbar SaraORCID,Singleton Kyle W.ORCID,Curtin LeeORCID,Paulson LisaORCID,Clark-Swanson KamalaORCID,Hawkins-Daarud AndreaORCID,Mitchell J. RossORCID,Jackson Pamela R.ORCID,Swanson Kristin R.ORCID

Abstract

AbstractIdentification of key phenotypic regions such as necrosis, contrast enhancement, and edema on magnetic resonance imaging (MRI) is important for understanding disease evolution and treatment response in patients with glioma. Manual delineation is time intensive and not feasible for a clinical workflow. Automating phenotypic region segmentation overcomes many issues with manual segmentation, however, current glioma segmentation datasets focus on pre-treatment, diagnostic scans, where treatment effects and surgical cavities are not present. Thus, existing automatic segmentation models are not applicable to post-treatment imaging that is used for longitudinal evaluation of care. Here, we present a comparison of three-dimensional convolutional neural networks (nnU-Net architecture) trained on large temporally defined pre-treatment, post-treatment, and mixed cohorts. We used a total of 1563 imaging timepoints from 854 patients curated from 13 different institutions as well as diverse public data sets to understand the capabilities and limitations of automatic segmentation on glioma images with different phenotypic and treatment appearance. We assessed the performance of models using Dice coefficients on test cases from each group comparing predictions with manual segmentations generated by trained technicians. We demonstrate that training a combined model can be as effective as models trained on just one temporal group. The results highlight the importance of a diverse training set, that includes images from the course of disease and with effects from treatment, in the creation of a model that can accurately segment glioma MRIs at multiple treatment time points.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3