Improving few-shot learning-based protein engineering with evolutionary sampling

Author:

Jawaid M. Zaki,Yeo Robin W.,Gautam Aayushma,Gainous T. Blair,Hart Daniel O.,Daley Timothy P.

Abstract

AbstractDesigning novel functional proteins remains a slow and expensive process due to a variety of protein engineering challenges; in particular, the number of protein variants that can be experimentally tested in a given assay pales in comparison to the vastness of the overall sequence space, resulting in low hit rates and expensive wet lab testing cycles. In this paper, we propose a few-shot learning approach to novel protein design that aims to accelerate the expensive wet lab testing cycle and is capable of leveraging a training dataset that is both small and skewed (≈ 105datapoints, < 1% positive hits). Our approach is composed of two parts: a semi-supervised transfer learning approach to generate a discrete fitness landscape for a desired protein function and a novel evolutionary Monte Carlo Markov Chain sampling algorithm to more efficiently explore the fitness landscape. We demonstrate the performance of our approach by experimentally screening predicted high fitness gene activators, resulting in a dramatically improved hit rate compared to existing methods. Our method can be easily adapted to other protein engineering and design problems, particularly where the cost associated with obtaining labeled data is significantly high. We have provided open source code for our method athttps://github.com/SuperSecretBioTech/evolutionary_monte_carlo_search.

Publisher

Cold Spring Harbor Laboratory

Reference34 articles.

1. PERSPECTIVE:SIGN EPISTASIS AND GENETIC CONSTRAINT ON EVOLUTIONARY TRAJECTORIES

2. Zhizhou Ren , Jiahan Li , Fan Ding , Yuan Zhou , Jianzhu Ma , and Jian Peng . Proximal exploration for model-guided protein sequence design. In International Conference on Machine Learning, pages 18520–18536. PMLR, 2022.

3. Design by Directed Evolution

4. Methods for the directed evolution of proteins

5. Deep mutational scanning: a new style of protein science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3