Enhancing Collaborative Neuroimaging Research: Introducing COINSTAC Vaults for Federated Analysis and Reproducibility

Author:

Martin Dylan,Basodi Sunitha,Panta SandeepORCID,Rootes-Murdy Kelly,Prae Paul,Sarwate Anand D.,Kelly Ross,Romero Javier,Baker Bradley T.,Gazula Harshvardhan,Bockholt Jeremy,Turner Jessica,Esper Nathalia B.,Franco Alexandre R.,Plis Sergey,Calhoun Vince D.ORCID

Abstract

ABSTRACTCollaborative neuroimaging research is often hindered by technological, policy, administrative, and methodological barriers, despite the abundance of available data. COINSTAC is a platform that successfully tackles these challenges through federated analysis, allowing researchers to analyze datasets without publicly sharing their data. This paper presents a significant enhancement to the COINSTAC platform: COINSTAC Vaults (CVs). CVs are designed to further reduce barriers by hosting standardized, persistent, and highly-available datasets, while seamlessly integrating with COINSTAC’s federated analysis capabilities. CVs offer a user-friendly interface for self-service analysis, streamlining collaboration and eliminating the need for manual coordination with data owners. Importantly, CVs can also be used in conjunction with open data as well, by simply creating a CV hosting the open data one would like to include in the analysis, thus filling an important gap in the data sharing ecosystem. We demonstrate the impact of CVs through several functional and structural neuroimaging studies utilizing federated analysis showcasing their potential to improve the reproducibility of research and increase sample sizes in neuroimaging studies.

Publisher

Cold Spring Harbor Laboratory

Reference35 articles.

1. Multimodal Neuroimaging in Schizophrenia: Description and Dissemination

2. An open resource for transdiagnostic research in pediatric mental health and learning disorders

3. OpenfMRI: Open sharing of task fMRI data

4. [Dataset] Babayan, A. , Baczkowski, B. , Cozatland, R. , Dreyer, M. , Engen, H. , Erbey, M. , et al. (2020-07-22). MPI-Leipzig Mind-Brain-Body Dataset

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3