Variation in thermal sensitivity of diapause development among individuals and over time predicts life history timing in a univoltine insect

Author:

Toxopeus JantinaORCID,Dowle Edwina J.ORCID,Andaloori Lalitya,Ragland Gregory J.ORCID

Abstract

AbstractPhysiological time is important for understanding the development and seasonal timing of ectothermic animals, but has largely been applied to developmental processes that occur during spring and summer such as morphogenesis. There is a substantial knowledge gap in the relationship between temperature and development during winter, a season that is increasingly impacted by climate change. Most temperate insects overwinter in diapause, a developmental process with little obvious morphological change. We used principles from the physiological time literature to measure and model the thermal sensitivity of diapause development rate in the apple maggot flyRhagoletis pomonella, a univoltine fly whose diapause duration varies substantially within and among populations. We show that diapause duration can be predicted by modeling a relationship between temperature and development rate that is shifted towards lower temperatures compared to typical models of morphogenic, non-diapause development. However, incorporating interindividual variation and ontogenetic variation in the temperature-to-development-rate relationship was critical for accurately predicting fly emergence, as diapause development proceeded more quickly at high temperatures later in diapause. We conclude that the conceptual framework may be flexibly applied to other insects and discuss possible mechanisms of diapause timers and implications for phenology with warming winters.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3